3.448 \(\int \frac{x (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{d+e x} \, dx\)

Optimal. Leaf size=295 \[ \frac{\left (3 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 c^2 d^2 e^3}-\frac{\left (3 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{128 c^{5/2} d^{5/2} e^{7/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac{1}{24} \left (\frac{3 a}{c d}+\frac{5 d}{e^2}\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} \]

[Out]

((c*d^2 - a*e^2)*(5*c*d^2 + 3*a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/
(64*c^2*d^2*e^3) - (((3*a)/(c*d) + (5*d)/e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/24 + (a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(4*c*d*e*(d + e*x)) - ((c*d^2 - a*e^2)^3*(5*c*d^2 + 3*a*e^2)*ArcTanh[(c*d^2
+ a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(128*c^(5/2)*d^
(5/2)*e^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.282479, antiderivative size = 295, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {794, 664, 612, 621, 206} \[ \frac{\left (3 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 c^2 d^2 e^3}-\frac{\left (3 a e^2+5 c d^2\right ) \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{128 c^{5/2} d^{5/2} e^{7/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac{1}{24} \left (\frac{3 a}{c d}+\frac{5 d}{e^2}\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x),x]

[Out]

((c*d^2 - a*e^2)*(5*c*d^2 + 3*a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/
(64*c^2*d^2*e^3) - (((3*a)/(c*d) + (5*d)/e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/24 + (a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(4*c*d*e*(d + e*x)) - ((c*d^2 - a*e^2)^3*(5*c*d^2 + 3*a*e^2)*ArcTanh[(c*d^2
+ a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(128*c^(5/2)*d^
(5/2)*e^(7/2))

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx &=\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}+\frac{1}{8} \left (-\frac{5 d}{e}-\frac{3 a e}{c d}\right ) \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx\\ &=-\frac{1}{24} \left (\frac{3 a}{c d}+\frac{5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}+\frac{\left (\left (\frac{5 d}{e}+\frac{3 a e}{c d}\right ) \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )\right ) \int \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{16 e^2}\\ &=\frac{\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac{1}{24} \left (\frac{3 a}{c d}+\frac{5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac{\left (\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right )\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 c^2 d^2 e^3}\\ &=\frac{\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac{1}{24} \left (\frac{3 a}{c d}+\frac{5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac{\left (\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{64 c^2 d^2 e^3}\\ &=\frac{\left (c d^2-a e^2\right ) \left (5 c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c^2 d^2 e^3}-\frac{1}{24} \left (\frac{3 a}{c d}+\frac{5 d}{e^2}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 c d e (d+e x)}-\frac{\left (c d^2-a e^2\right )^3 \left (5 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^{5/2} d^{5/2} e^{7/2}}\\ \end{align*}

Mathematica [A]  time = 1.30039, size = 276, normalized size = 0.94 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\sqrt{c} \sqrt{d} \sqrt{e} \left (3 a^2 c d e^4 (3 d+2 e x)-9 a^3 e^6+a c^2 d^2 e^2 \left (-31 d^2+20 d e x+72 e^2 x^2\right )+c^3 d^3 \left (-10 d^2 e x+15 d^3+8 d e^2 x^2+48 e^3 x^3\right )\right )-\frac{3 \sqrt{c d} \left (c d^2-a e^2\right )^{5/2} \left (3 a e^2+5 c d^2\right ) \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{\sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}}\right )}{192 c^{5/2} d^{5/2} e^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-9*a^3*e^6 + 3*a^2*c*d*e^4*(3*d + 2*e*x) + a*c^2*d^2*
e^2*(-31*d^2 + 20*d*e*x + 72*e^2*x^2) + c^3*d^3*(15*d^3 - 10*d^2*e*x + 8*d*e^2*x^2 + 48*e^3*x^3)) - (3*Sqrt[c*
d]*(c*d^2 - a*e^2)^(5/2)*(5*c*d^2 + 3*a*e^2)*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sq
rt[c*d^2 - a*e^2])])/(Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)])))/(192*c^(5/2)*d^(5/2)*e^(7/2))

________________________________________________________________________________________

Maple [B]  time = 0.064, size = 1279, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x)

[Out]

1/4/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*x+1/8/d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*a+1/8/e^2*d*(a
*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)-3/32*e^2/d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a^2+3/16*d*(a*d*e
+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a-3/32/e^2*d^3*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-3/64*e^3/d^2/c^
2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^3+3/64*e/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^2+3/64/e*d^2*
(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a-3/64/e^3*d^4*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+3/128*e^5/d^2
/c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^4
-3/32*e^3/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1
/2)*a^3+9/64*e*d^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*
e*c)^(1/2)*a^2-3/32/e*d^4*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(
1/2))/(d*e*c)^(1/2)*a+3/128/e^3*d^6*c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)-1/3*d/e^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)-1/4*d*a*(c*d*e*(d/e+x)
^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-1/8*e*a^2/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+1/16*e^3*a^3/c*ln(
(1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)
-3/16*d^2*e*a^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(
1/2))/(d*e*c)^(1/2)+3/16*d^4/e*a*c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^
2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)+1/4*d^3/e^2*c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x+1/8*d^4/e
^3*c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-1/16*d^6/e^3*c^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*
e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.85972, size = 1426, normalized size = 4.83 \begin{align*} \left [-\frac{3 \,{\left (5 \, c^{4} d^{8} - 12 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} - 3 \, a^{4} e^{8}\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \,{\left (48 \, c^{4} d^{4} e^{4} x^{3} + 15 \, c^{4} d^{7} e - 31 \, a c^{3} d^{5} e^{3} + 9 \, a^{2} c^{2} d^{3} e^{5} - 9 \, a^{3} c d e^{7} + 8 \,{\left (c^{4} d^{5} e^{3} + 9 \, a c^{3} d^{3} e^{5}\right )} x^{2} - 2 \,{\left (5 \, c^{4} d^{6} e^{2} - 10 \, a c^{3} d^{4} e^{4} - 3 \, a^{2} c^{2} d^{2} e^{6}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{768 \, c^{3} d^{3} e^{4}}, \frac{3 \,{\left (5 \, c^{4} d^{8} - 12 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} - 3 \, a^{4} e^{8}\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \,{\left (48 \, c^{4} d^{4} e^{4} x^{3} + 15 \, c^{4} d^{7} e - 31 \, a c^{3} d^{5} e^{3} + 9 \, a^{2} c^{2} d^{3} e^{5} - 9 \, a^{3} c d e^{7} + 8 \,{\left (c^{4} d^{5} e^{3} + 9 \, a c^{3} d^{3} e^{5}\right )} x^{2} - 2 \,{\left (5 \, c^{4} d^{6} e^{2} - 10 \, a c^{3} d^{4} e^{4} - 3 \, a^{2} c^{2} d^{2} e^{6}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{384 \, c^{3} d^{3} e^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/768*(3*(5*c^4*d^8 - 12*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(c*d*e)*log(8*
c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x
 + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(48*c^4*d^4*e^4*x^3 + 15*c^4*d^7*e - 31*a*c^3
*d^5*e^3 + 9*a^2*c^2*d^3*e^5 - 9*a^3*c*d*e^7 + 8*(c^4*d^5*e^3 + 9*a*c^3*d^3*e^5)*x^2 - 2*(5*c^4*d^6*e^2 - 10*a
*c^3*d^4*e^4 - 3*a^2*c^2*d^2*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4), 1/384*(3*(5*c
^4*d^8 - 12*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (
c^2*d^3*e + a*c*d*e^3)*x)) + 2*(48*c^4*d^4*e^4*x^3 + 15*c^4*d^7*e - 31*a*c^3*d^5*e^3 + 9*a^2*c^2*d^3*e^5 - 9*a
^3*c*d*e^7 + 8*(c^4*d^5*e^3 + 9*a*c^3*d^3*e^5)*x^2 - 2*(5*c^4*d^6*e^2 - 10*a*c^3*d^4*e^4 - 3*a^2*c^2*d^2*e^6)*
x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError